Sheffield R MeetUp

Compete (and win) on Kaggle

Lukáš Drápal Senior Data Scientist, Capital One in (lukas.drapal@capitalone.com)

1st November 2016

Agenda

- Introduction
 - I do not Kaggle as my day job ⁽ⁱ⁾
- Kaggle.com
 - How it works?
- Allstate Purchase prediction challenge
 - Challenge description
 - Solution overview
 - Used technique & tools
- Why Kaggle?

How scoring on Kaggle works

- Training set (97 009 customers): response known
- Test set (55 716 customers): response unknown
 - Public leaderboard (30% of test set)
 - Score on public leaderboard is shown immediately after a prediction is uploaded
 - Private leaderboard (70% of test set)
 - Shown after the competition end
 - Only private leaderboard score matters
- "Leaderboard overfitting"
 - Tuning predictions based on the public leaderboard
 - Decreases the ability of predictions to generalized on the private leaderboard

Completed • \$50,000 • 1,568 teams

Allstate Purchase Prediction Challenge

Tue 18 Feb 2014 - Mon 19 May 2014 (21 months ago)

Dashboard V Private Leaderboard - Allstate Purchase Prediction Challenge

This competition has completed. This leaderboard reflects the final standings. See someone using multiple accounts? Let us know. ∆rank Team Name * in the money Score 😮 Entries Last Submission UTC (Best - Last Submission) # Prazaci 🏨 * 1 110 t 0.53743 151 Mon, 19 May 2014 19:00:09 (-4.4h) Alessandro & BreakfastPirate # * 2 0.53715 263 **†2** Mon, 19 May 2014 21:13:00 (-20.3h) Dashboard Public Leaderboard - Allstate Purchase Prediction Challenge

This leaderboard is calculated on approximately 30% of the test data. The final results will be based on the other 70%, so the final standings may be different. See someone using multiple accounts? Let us know.

#	Δ1w	Team Name * in the money	Score 🕜	Entries	Last Submission UTC (Best - Last Submission)
1	†2	Magic Learner 🏨 *	0.54571	397	Mon, 19 May 2014 23:49:54 (-2.3d)
2	Ļ1	Owen *	0.54571	71	Mon, 19 May 2014 00:55:50 (-0h)
3	Ļ1	Finite State Insurance Machines 🍂 *	0.54565	222	Mon, 19 May 2014 20:02:51 (-3.8d)
4	_	🔿 Alessandro & BreakfastPirate 🍂 *	0.54535	263	Mon, 19 May 2014 21:13:00 (-20.3h)
5	↑5	JWANG	0.54487	56	Mon, 19 May 2014 23:46:56
6	†11	dynamic24	0.54481	231	Mon, 19 May 2014 23:54:13 (-25.6h)
7	Ļ1	User Error Structure 🏨	0.54463	105	Sun, 18 May 2014 17:37:47 (-39.8h)
8	↑4	Random Predict 🏨	0.54445	292	Mon, 19 May 2014 18:02:54 (-43.5h)
9	↓4	Maxim	0.54433	102	Mon, 19 May 2014 18:20:38 (-11.8d)
10	↓2	Peng	0.54415	112	Mon, 19 May 2014 23:42:08 (-23.1h)
11	↑52	Prazaci 💶	0.54403	151	Mon, 19 May 2014 19:00:09 (-4.4h)

Business idea

- Business idea:
 - Recommend insurance policy settings for customers
 - Shorter quoting process
 - Better customer experience
 - A customer does not leave to competition within a tedious process

Problem description

- Task: Predict the purchased coverage options
 - "Quote" = a single combination of 7 options
 - Each option has 2 to 4 possible values
- Data for one customer consists of:
 - Demographic information + location + cost of quote
 - Quote history:

	Α	В	С	D	E	F	G
	Collision	Property	Medical	Uninsured	Under-	Bodily	Compre-
		Damage			insured	Injury	hensive
Quote 1	1	1	4	3	0	1	2
Quote 2	1	1	4	3	0	1	2
Quote 3	1	2	4	3	0	2	2
Quote 4	1	1	4	3	0	2	2
Quote 5	1	1	4	3	0	2	2
Purchase	1	1	4	3	0	2	2

Last quoted benchmark (LQB) worked really well

Modelling

- Strict evaluation metrics all policy options (A to G) needs to be predicted correctly (no partial credit)
- What to choose as the response variable?
 - One policy option
 - 7 models
 - Although each individual option is predicted with a high accuracy, last quoted benchmark worked better
 - All policies together
 - Response with level "2143022" corresponds to (A = 2, B = 1, ...)
 - Too many levels (> 2000), too little data
 - Some policies together
 - Pick pairs that are correlated (AF, BE, CD, G) and make 4 models

Example: model for AF (1/2)

- Possible values A = {0, 1, 2}; F = {0, 1, 2, 3}
- Created variable AF with 12 levels: AF = {00, 01, 02, 03, 10, ..., 22, 23}
- Predictors One row per a customer: Demographic information, location, Quote_1A, .. Quote_1G,, Quote_5A, ... Quote_5G ()
- Multinomial response: AF (e.g. 10)

	Α	В	С	D	E	F	G
	Collision	Property	Medical	Uninsured	Under-	Bodily	Compre-
		Damage			insured	Injury	hensive
Quote 1	1	1	4	3	0	1	2
Quote 2	1	1	4	3	0	1	2
Quote 3	1	2	4	3	0	2	2
Quote 4	1	1	4	3	0	2	2
Quote 5	1	1	4	3	0	2	2
Purchase	1	1	4	3	0	2	2

Example: model for AF (2/2)

- Output: 12 scores describing how is likely a given combination of AF
- Prediction of the model: combination of AF with the highest score

Solution overview

Models

- Averaging models together helps to improve performance (variance of predictions decreases)
 - Especially if models are not correlated, errors tend to cancel out
- 3 models with different complexity were build and combined
- Classifier
 - Models still lack interaction between policies
 - Classify whether LQB or models outcome should be used
 - It can say that LQB should be used even when three models agree on a change
- All models: gradient boosted machines

Decision trees

Find out the rich folks on a party with yes/no questions:

Decision trees can be very instable

After Paris Hilton walks in:

Instability: a small change in a dataset can lead to a completely different structure

General stochastic gradient

- General any differentiable loss function L
- Observations from training set (X₁, y₁), ... (X_n, y_n)
- 1. Put constant $F_0(x) = \operatorname*{arg\,min}_{\gamma} \sum_{i=1}^n L(y_i, \gamma).$

2. For each tree (m = 1,...,M) do

a) Bagging (sample rows of dataset) b) Compute *pseudresiduals:* $r_{im} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x)=F_{m-1}(x)}$

c) Fit a regression tree h_m with K terminal nodes with pseudoresiduals r_{im} as the response using only *the bagged sample* d) Find optimal $\gamma_{mk} = \arg \min \sum L(y_i, F_{m-1}(x_i) + \gamma)$

a) Find optimal
$$\gamma_{mk} = \arg\min_{\gamma} \sum_{S_k} L(y_i, F_{m-1}(x_i) + \gamma)$$

where S_k is the set of x_i that define terminal node k.

e) Update $F_m(x_i) = F_{m-1}(x_i) + \alpha \gamma_{mk(x_i)}$ where $k(x_i)$ indicates the index of the terminal node into which observation x_i would fall. This step is done only on the bagged sample.

3. Use $F_M(x)$ as the final model

Gradient boosting machines in practise

- Used package gbm, hyperparameters tuned with caret
- Hyperparameters that need to be tuned:
 - Number of trees (M)
 - Depth of trees
 - Minimal number of observations in a node
 - Learning rate (effects finding optimal c)
 - Bagging proportion
 - Loss function
- XGBoost (new) very flexible implementation
- H2O modern modelling opensource ML tool with connections (packages/libraries) to Python, R...

Why Kaggle?

- Criticism: Kaggle is not like the real world

 Problem definition, evaluation and data are not that clear
- Data science is learned by DOING
- Kaggle offers:
 - Great datasets to play with
 - Competitions that can really push You
 - Community that shares the newest tools (H2O, Vowpal Wabbit, ...) and top techniques
- Observations:
 - Performance boost is mostly based on feature engineering
 - Averaging predictions based on different algorithms
 - (e.g. gradient boosting + deep learning) helps to get an edge

Warning: competing @ Kaggle is addictive

15 active competitions Sort By Pr							Prize		•	
Active	All	Entered	Hosted	Main Site	~	All Eval Metrics	~	Q		
		Santa Can you Featured	nder Product Re pair products with peop • 2 months to go • 309 ke	commendation le? ernels					\$60,00 213 tea) 0 ms
¢		Bosch Reduce n Featured	Production Line nanufacturing failures 11 days to go • 1,561 ker	e Performance					\$30,00 1,215 tea) 0 ms
0	0	Outbra Can you Featured	ain Click Predict predict which recomment 3 months to go • 673 ke	t ion nded content each user will ernels	click?				\$25,00 318 tea) 0 ms
	VERSITY OF DURNE	Melbourne University AES/MathWorks/NIH Seizure Prediction Predict seizures in long-term human intracranial EEG recordings Research · 21 days to go · 571 kernels						\$20,00 679 tea) 0 ms	
	S	Allstat How seve Recruitme	te Claims Severi ere is an insurance claim nt · A month to go · 1,14	ty n? 4 kernels					Jo 1,544 tea	bs ms

Q&A

